STRUCTURE AND STEREOCHEMISTRY OF 2-CHLOROMETHYLPENAM AND 3-CHLOROCEPHAM DERIVATIVES STUDIED BY ¹³C AND ¹H NMR SPECTROSCOPY

Kazuo Tori, Tadahiko Tsushima, Youko Tamura, Hiroko Shigemoto, Teruji Tsuji,

Hiroyuki Ishitobi and Hiroshi Tanida*

Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Usaka, 553 Japan

(Received in Japan 25 July 1975; received in UK for publication 12 August 1975)

During our investigation of conversion from penicillins to cephalosporins, we needed to assign three isomeric products, obtained from the reaction in the preceding paper, ¹ to the four possible structures, <u>e.g.</u>, 2α - (3) and 2\beta-chloro-substituted methyl phthalimidopenicillanates (5), and 3β- (9) and 3α-chloro-7β-phthalimidocephams (11). This problem has become important since previous workers² seemed to assign incorrectly the 3-chlorocepham to 5; at an earlier stage the structure and stereochemistry of these isomers could not unambiguously be established readily by ¹H NMR as well as other spectroscopies. Thus, we wish to report here our structural assessment of these compounds by ¹³C and ¹H NMR spectroscopy.

The natural-abundance ¹³C FT NMR spectra of methyl phthalimidopenicillanate (1), 3, 5, 2 α , 2 β -dichloro-substituted derivative (7), 9, and their (R)-sulfoxides (2, 4, 6, 8, and 10) were examined in CDCl₃ with ¹H noise-decoupling and single-frequency off-resonance decoupling (SFORD)³ techniques. The ¹³C signals were assigned according to Archer, <u>et al</u>.⁴ and by chemical-shift comparison from compound to compound. The results are listed in TABLE 1.

Differentiation of cepham 2 (or 11) from penams 3 and 5 was straightforward; a triplet signal at δ_{C} 37.4 in the SFORD spectrum of 2 (or 11) was easily assigned to C-2, whereas CH₂Cl signals of 3 and 5were found at much lower fields (δ_{C} 51.6 and 52.9, respectively). Assignments of 3 and 5 were based on the CH₃ signal positions; the 2α -CH₃ signal is known to appear at a field higher than the 2β -CH₃ signal is 4,5 Thus the CH₃ signal in 3 appears at δ_{C} 27.6 and that in 5 at 23.0.

With the transformation of the penicillins into their sulfoxides, the CH₂Cl signals were shifted upfield by -9.0 ($3 \div 4$) and -4.2 ppm ($5 \div 6$) and the CH₃ signals by -4.8 ($3 \div 4$) and -8.8 ppm ($5 \div 6$). Since in

FIGURE. Structure and conformation (Ft = phthalimido).

penicillins the shielding is known to be greater for 2α -CH₃ than for 2β -CH₃⁵ (steric γ -effects),³ the above finding indicates that the CH₂Cl-carbons locate at the γ -positions from the S-atoms, and also that the CH₂Cl in 3 is in the α -side. In a change from cepham 2 (or 11) into 10 (or 12), the C-2 (β from S) and 3-CH₃ (δ from S) signals are both deshielded by +21.6 and +0.8 ppm, respectively.

The γ -effects of (R)-sulfoxidation in the penams were found to be stronger upon 2α -CH₂R (-7~-12 ppm) than 2β -CH₂R (-4~-6 ppm), as observed previously ⁴,⁵ This fact results from a conformational change from sulfide to sulfoxide;^{4,5} all penams under study were also subjected to examinations by nuclear Overhauser effects⁶ (NOE) in ¹H NMR to show conformational changes similar to those reported,⁵ as indicated in the FIGURE.⁷

Chlorination effects in the penams exhibited a different trend between the sulfides and the (R)-sulfoxides; this can result also from their conformational difference. It should be noted that chlorination at 2α -CH₃ little shields C-3 in the sulfoxides, and that C-5 is more deshielded by chlorination at 2β -CH₃ (+3.1 ppm)

Carbon No.			5								
	l	2	<u>3</u>	4~	5	٤	2	8 ~	Carbon No.	2	10
2	65.9	71.6	70.8	75.3	70.8	78.6	75.8	83.0	2	37.4	59.2
3	70.9	65.9	67.3	64.8	65.5	63.4	64.4	62.6	3	61.6	66.1
5	67.0	81.0	69.2	82.8	67.8	84.1	67.2	86.7	4	61.2	59.6
6	58.6	55.5	59.0	55.8	59.8	56.5	60.1	56.5	6	53.9	74.6
7	168.5 ^b	168.2 ^b	168.1	167.7	168.0 ^b	167.6 ^b	167.1 ^b	166.5 ^b	7	59.0	57.9
2α-CH ₂ R	27.9	16.3	51.6	42.6	23.0	14.2	46.8	39.9	8	161.6 ^b	160.7 ^b
3β-CH ₂ R	30.9	25.0	27.6	22.8	52.9	48.7	48.1	45.2	3-CH₃	28.6	29.4
ĊO₂ĊĤ₃	52.4	52.9	52.9	53.3	52.6	53.5	53.0	53.3	CO₂ČH₃	52.8	53.1
$\underline{C}O_2\overline{C}H_3$	168.3 ^b	167.2 ^b	168.1	167.7	166.8 ^b	165.8 ^b	166.5 ^b	165.4 ^b	$CO_2\overline{C}H_3$	167.5 ^b	166.1 ^b

TABLE 1. ¹³C Chemical Shift Data, δ_{C}^{a}

^a ¹³C FT NMR spectra were determined with a Varian NV-14 FT NMR spectrometer operating at 15.09 MHz at 30° using CDCl₃ solutions containing TMS as an internal reference (δ_{C} 0) in 8-mm tubes; precisions of δ_{C} are ±0.1. δ_{C} values for the phthalimido group were as follows: 166.7 ± 0.1 (CO), 124.0 ± 0.2 (4'-C), 134.8 ± 0.3 (5'-C), and 131.5 ± 0.2 (8'-C). ^b These assignments are tentative.

than by that at 2α -CH₃ (+1.8 ppm) in the sulfoxides, whereas an opposite trend is seen in the sulfides.

As a result, the above 13 C NMR spectral evidence has established the structure and stereochemistry of penams 3 and 5.

¹H NMR spectroscopy was also useful for diagnosing the structures of the (R)-sulfoxides, as has been known.⁵ As shown in TABLE 2, aromatic solvent induced shifts (ASIS)⁸ with C₆D₆ were pronounced for 2β-CH₂R (or 2β-H) more than for 2α-CH₂R (or 2α-H).⁵,⁹ The difference between the ASIS values for 2α-H and 2β-H in cepham 10 (or 12) is clearly larger than those between the geminal CH₂Cl protons in penams 4 and 6 are. Furthermore, lanthanide-induced shifts¹⁰ with Eu(dpm)₃ in CDCl₃ for these sulfoxides exhibited clear large differences between 2α-CH₂R (or 2α-H) and 2β-CH₂R (or 2β-H), the values for the former being considerably larger as reported¹¹ (see TABLE 2). These results are in harmony with those from ¹³C NMR, confirming that these sulfoxides have the (R)-configuration, simultaneously.

Finally, both configuration at C-3 and conformation of the 3-chlorocepham and its (R)-sulfoxide were simultaneously revealed by NOE measurements⁶ to be 9 and 10, respectively, among four possible stereostructures⁵ expected for each compound. The results are indicated in the FIGURE, in which the only positive NOE enhancements are represented by percentage increases in signal intensities; the measurements were carried out between all measurable pairs of proton signals. As a conclusion, the structures of all compounds examined have been established, unequivocally.

Compound	b	3β-Η	5a-H	6a-H	2a-CH₂R		28	2β-CH ₂ R	
2	δ ^c Δδd	4.62	4.84	5.88	1.33			1.82	
≈	ΔΕυ	4.59	11.7	3.56	7.42			3.11	
4	δ Δδ ΔΕυ	4.68 -0.10 3.68	5.17 -0.29 9.41	5.90 -0.39 2.86	3.90 -0.17 5.86	4.04 -0.14 6.85		1.94 -0.31 2.42	3.85 -0.45 0.94
٤	δ Δδ ΔΕυ	4.94 -0.03 3.37	4.98 -0.29 7.95	5.95 -0.41 3.61	1 -0 5	.43 .15 .12	2.18	4.14 -0.25 2.68	3.85 -0.54 0.77
8	δ ∆δ ∆Ευ ^e	4.93 -0.02 4.1	5.18 -0.21 9.3	6.00 -0.36 3.5	3.98 -0.01 6.6	4.13 -0.01 7.3	4.35 -0.10 3.7	4.47 -0.05 4.0	3.87 -0.54 0.65
		4β-H	6a-H	7α-H	2α-I	н	2β-Н	3-CH₃	CO ₂ CH ₃
10	δ Δδ ^f ΔΕυ	4.76 -0.11 3.19	5.12 -0.19 14.0	5.93 -0.30 5.71	3.5 -0.2 8.7	53 20 75	3.74 -0.41 3.42	1.78 -0.41 1.64	3.85 -0.41 1.07

TABLE 2. ¹H NMR Spectral Data on the Sulfoxides Examined^a

^a ¹H NMR spectra were taken with a Varian A-60A spectrometer in CDCI₃ and C₆D₆ at 38°; precisions of δ_{\perp} are ±0.02. NOE experiments were carried out on a Varian HA-100 spectrometer operating at 100 MHz in the frequency-swept and TMS-locked mode in CDCl3; accuracies are ±2%. For the data on the sulfides and a simple procedure proposed for diagnosing their structure, see the preceding paper.¹ b δ , $\Delta\delta$, and ΔEu are ¹H chemical shift, ASIS with $C_6D_6 = \delta_H(C_6D_6) - \delta_H(CDCl_3)$, and $Eu(dpm)_3$ -induced shift at a 1:1 molar ratio of Eu/substrate in each shift curve, respectively; a plus sign represents a downfield shift. ^c Identical with the reported values.⁹ ^d Considerably differ from the reported values.⁹ ^e Extrapolated values because of the sample decomposition during additions of Eu(dpm)₃. f Using a 1:1 mixture of C₆D₆ and $CDCl_3$ because of low solubility in C_6D_6 .

REFERENCES

- (1) H. Tanida, T. Tsuji, T. Tsushima, H. Ishitobi, T. Irie, T. Yano, H. Matsumura and K. Tori, the preceding paper.
- (2) S. Kukolja and S. R. Lammert, J. Amer. Chem. Soc. 94, 7169 (1972).
- (3) G. C. Levy and G. L. Nelson, "Carbon -13 Nuclear Magnetic Resonance for Organic Chemists," Wiley-Interscience, New York (1972).
- (4) R. A. Archer, R. D. G. Cooper, P. V. Demarco and L. F. Johnson, Chem. Commun. 1291 (1970).
- (5) P. V. Demarco and R. Nagarajan, "Cephalosporins and Penicillins. Chemistry and Biology," Ed. E. H. Flynn, Chapter 8, Academic Press, New York (1972).
- (6) J. H. Noggle and R. E. Schirmer, "The Nuclear Overhauser Effect. Chemical Applications," Academic Press, New York (1971).
- (7) K. Tori, T. Tsushima and H. Tanida, unpublished results.
- (8) For a leading reference, see K. Tori, I. Horibe, H. Shigemoto and K. Umemoto, Tetrahedron Lett, 2199 (1975).
- (9) R. D. G. Cooper, P. V. Demarco and D. O. Spry, J. Amer. Chem. Soc. <u>91</u>, 1528 (1969).
- (10) For a review, see B. C. Mayo, <u>Chem. Soc. Rev.</u> 2, 49 (1973).
 (11) A. K. Bose, B. Dayal, H. P. S. Chawla and M. S. Manhas, <u>Tetrahedron Lett</u>. 3599 (1972).